Recent Progress in Triboelectric Nanogenerator-enabled Cathodic Protection Systems for Marine Vessels

LI Peng, WEI Boxuan, DONG Bo, LI Chao, XIE Quansong

Equipment Environmental Engineering ›› 2025, Vol. 22 ›› Issue (9) : 23-34.

PDF(15808 KB)
PDF(15808 KB)
Equipment Environmental Engineering ›› 2025, Vol. 22 ›› Issue (9) : 23-34. DOI: 10.7643/ issn.1672-9242.2025.09.003
Special Topic—Reliability of Ship Equipment

Recent Progress in Triboelectric Nanogenerator-enabled Cathodic Protection Systems for Marine Vessels

  • LI Peng1, WEI Boxuan2, DONG Bo3, LI Chao4, XIE Quansong1,*
Author information +
History +

Abstract

The workprovidesa systematic review of the progress in applying TENG technology to ship cathodic protection (CP), focusing on its energy harvesting mechanisms in marine environments, material optimization strategies, and practical application challenges. Conventional CP techniques, such as sacrificial anodes and impressed current systems, suffer from limitations including resource wastage, high energy consumption, and poor environmental adaptability. However, TENGs harness solid-liquid or solid-solid triboelectrification effects to convert low-frequency wave energy, vibration energy, and other ambient sources into electricity, offering a self-powered anti-corrosion solution for ships. Research shows that superhydrophobic coatings, self-healing materials, and frequency-multiplying structural designs (e.g., FMC-TENG) significantly enhance the output stability and durability of TENGs in humidand high-salinity environments. Moreover, the integration of TENGs with unmanned underwater vehicles (UUVs) not only extends their operational endurance but also mitigates corrosion risks. Notwithstanding these advancements, challenges remain regarding insufficient output power, long-term reliability, large scale application, etc. To propel TENG implementation in marine engineering, future efforts require prioritize interdisciplinary innovation, high-performance material development, system integration optimization, and standardized evaluation frameworks.

Key words

triboelectric nanogenerator / ship corrosion / cathodic protection / unmanned underwater vehicles / superhydrophobic materials / ocean energy harvesting

Cite this article

Download Citations
LI Peng, WEI Boxuan, DONG Bo, LI Chao, XIE Quansong. Recent Progress in Triboelectric Nanogenerator-enabled Cathodic Protection Systems for Marine Vessels[J]. Equipment Environmental Engineering. 2025, 22(9): 23-34 https://doi.org/10.7643/ issn.1672-9242.2025.09.003

References

[1] 侯保荣, 张盾, 王鹏. 海洋腐蚀防护的现状与未来[J]. 中国科学院院刊, 2016, 31(12): 1326-1331.
HOU B R, ZHANG D, WANG P.Marine Corrosion and Protection: Current Status and Prospect[J]. Bulletin of Chinese Academy of Sciences, 2016, 31(12): 1326-1331.
[2] 孙伟赫, 洪亮, 赵建印. 海洋大气环境下装备金属腐蚀速率预测技术研究综述[J]. 兵器装备工程学报, 2025, 46(2): 326-336.
SUN W H, HONG L, ZHAO J Y.Research Review on Forecasting Technology of Equipment Metal Corrosion Rate in Marine Atmospheric Environment[J]. Journal of Ordnance Equipment Engineering, 2025, 46(2): 326-336.
[3] 张先刚. 海洋工程结构与船舶防腐蚀技术探究[J]. 船舶物资与市场, 2023, 31(9): 30-32.
ZHANG X G.Research on Marine Engineering Structure and Ship Anti-Corrosion Technology[J]. Marine Equipment/Materials & Marketing, 2023, 31(9): 30-32.
[4] XU Y, HUANG Y L, CAI F F, et al.Study on Corrosion Behavior and Mechanism of AISI 4135 Steel in Marine Environments Based on Field Exposure Experiment[J]. Science of the Total Environment, 2022, 830: 154864.
[5] CHEN X, ZHOU G Z, WANG X T, et al.Progress in Semiconductor Materials for Photocathodic Protection: Design Strategies and Applications in Marine Corrosion Protection[J]. Chemosphere, 2023, 323: 138194.
[6] IMRAN M M H, JAMALUDIN S, AYOB A F M, et al. Application of Artificial Intelligence in Marine Corrosion Prediction and Detection[J]. Journal of Marine Science and Engineering, 2023, 11(2): 256.
[7] TSAO Y H, HUSAIN R A, LIN Y J, et al.A Self-Powered Mercury Ion Nanosensor Based on the Thermoelectric Effect and Chemical Transformation Mechanism[J]. Nano Energy, 2019, 62: 268-274.
[8] 吴晔盛, 刘启, 曹杰, 等. 收集振动能的摩擦纳米发电机设计与输出性能[J]. 物理学报, 2019, 68(19): 19-26.
WU Y S, LIU Q, CAO J, et al.Design and Output Performance of Vibration Energy Harvesting Triboelectric Nanogenerator[J]. Acta Physica Sinica, 2019, 68(19): 19-26.
[9] 姚博瀚. 基于悬臂梁式摩擦纳米发电机的低频振动传感器研究[D]. 大连: 大连海事大学, 2024.
YAO B H.Research on Low Frequency Vibration Sensor Based on Cantilever Friction Nanogenerator[D]. Dalian: Dalian Maritime University, 2024.
[10] AHMAD LONE S, LIM K C, KASWAN K, et al.Recent Advancements for Improving the Performance of Triboelectric Nanogenerator Devices[J]. Nano Energy, 2022, 99: 107318.
[11] SOARES C G, GARBATOV Y, ZAYED A, et al.Influence of Environmental Factors on Corrosion of Ship Structures in Marine Atmosphere[J]. Corrosion Science, 2009, 51(9): 2014-2026.
[12] GUEDES SOARES C, GARBATOV Y, ZAYED A, et al.Corrosion Wastage Model for Ship Crude Oil Tanks[J]. Corrosion Science, 2008, 50(11): 3095-3106.
[13] SUN P P, WANG Z R, LU Y W, et al.Analysis of the Corrosion Failure of a Semiconductor Polycrystalline Distillation Column[J]. Process Safety and Environmental Protection, 2020, 135: 244-256.
[14] HANSSON C M.The Impact of Corrosion on Society[J]. Metallurgical and Materials Transactions A,2011, 42(10): 2952-2962.
[15] 魏欢欢, 陈晨, 郑东东, 等. 海洋腐蚀环境下高强度钢材研究现状及发展趋势[J]. 人民珠江, 2023, 44(8): 82-92.
WEI H H, CHEN C, ZHENG D D, et al.Research Status and Development Trend of High Strength Steel in Marine Corrosive Environment[J]. Pearl River, 2023, 44(8): 82-92.
[16] 林昆勇. 中国海洋科技创新发展的历程、经验及建议[J]. 当代中国史研究, 2022, 29(1): 154.
LIN K Y. The Course, Experience and Suggestions of Innovation and Development of Marine Science and Technology in China[J]. Contemporary China History Studies, 2022, 29(1): 154.
[17] 周重威, 郭航, 陈永强, 等. 船体外表面在海水环境的腐蚀评价体系及缓解措施[J]. 船舶标准化工程师, 2025, 58(3): 19-21.
ZHOU Z W, GUO H, CHEN Y Q, et al.Evaluation System and Mitigation Measures for Corrosion of Ship Hull External Surfaces in Marine Environment[J]. Ship Standardization Engineer, 2025, 58(3): 19-21.
[18] GUDZE M T, MELCHERS R E.Operational Based Corrosion Analysis in Naval Ships[J]. Corrosion Science, 2008, 50(12): 3296-3307.
[19] YANG J Z, ZOU D J, ZHANG M, et al.Marine Steel Corrosion Prediction and Zonation Using Feature Extraction and Machine Learning in the Seas around China[J]. Ocean Engineering, 2024, 314: 119649.
[20] 尹建平, 左昭武, 袁起立. 舰船腐蚀环境与防护[J]. 全面腐蚀控制, 2009, 23(9): 44-45.
YIN J P, ZUO Z W, YUAN Q L.Corrosion Environment of Ship and Protection[J]. Total Corrosion Control, 2009, 23(9): 44-45.
[21] 李川, 罗茜, 张薇. 典型舰船用金属材料腐蚀与防护研究进展[J]. 装备环境工程, 2023, 20(8): 80-89.
LI C, LUO X, ZHANG W.Research Progress on Corrosion and Protection of Typical Warship Metal Materials[J]. Equipment Environmental Engineering, 2023, 20(8): 80-89.
[22] TIAN H Y, CUI Z Y, MA H, et al.Corrosion Evolution and Stress Corrosion Cracking Behavior of a Low Carbon Bainite Steel in the Marine Environments: Effect of the Marine Zones[J]. Corrosion Science, 2022, 206: 110490.
[23] 廖莹, 李娜, 李连军, 等. 海洋钢结构防腐蚀技术综述[J]. 四川建筑, 2022, 42(3): 264-269.
LIAO Y, LI N, LI L J, et al.Summary of Anti-Corrosion Technology for Offshore Steel Structures[J]. Sichuan Architecture, 2022, 42(3): 264-269.
[24] LI S C, JIN Z Q, PANG B, et al.Durability Performance of an RC Beam under Real Marine all Corrosion Zones Exposure for 7 Years[J]. Case Studies in Construction Materials, 2022, 17: e01516.
[25] 胡月晓. 恒电压摩擦纳米发电机的设计与应用研究[D]. 南宁: 广西大学, 2024.
HU Y X.Research on Design and Application of Constant Voltage Friction Nanogenerator[D]. Nanning: Guangxi University, 2024.
[26] 禹健, 郭艳婕, 杨雷. 固-液摩擦纳米发电机[J]. 机械工程学报, 2021, 57(21): 160-181.
YU J, GUO Y J, YANG L.Solid-Liquid Triboelectric Nanogenerator[J]. Journal of Mechanical Engineering, 2021, 57(21): 160-181.
[27] 杨仙, 闵伶俐, 朱颖琳, 等. 纳米孔道动电效应能量转换系统的前沿研究进展[J]. 应用化学, 2018, 35(6): 613-624.
YANG X, MIN L L, ZHU Y L, et al.Recent Research Progress on Nanopores and Nanochannels Based Electrokinetical Energy Conversion Systems[J]. Chinese Journal of Applied Chemistry, 2018, 35(6): 613-624.
[28] 杨淑涵, 蔡鹏. “双碳”战略背景下海洋可再生能源开发利用的产业化发展[J]. 船舶工程, 2025, 47(5): 123-131.
YANG S H, CAI P.Industrialization Development of Marine Renewable Energy Exploitation and Utilization under the Background of “Dual Carbon” Strategy[J]. Ship Engineering, 2025, 47(5): 123-131.
[29] 林世权, 丁相天, 李港, 等. 摩擦伏特效应的内涵、研究现状及展望[J]. 中国表面工程, 2025, 38(2): 148-166.
LIN S Q, DING X T, LI G, et al.Connotation, Research Status and Prospect of Tribovoltaic Effect[J]. China Surface Engineering, 2025, 38(2): 148-166.
[30] 佚名. 美开发出从海浪获取能源的纳米摩擦发电机[J]. 浙江电力, 2013, 32(11): 76.
Anonymous. The United States Has Developed a Nano- Friction Generator to Obtain Energy from Waves[J]. Zhejiang Electric Power, 2013, 32(11): 76.
[31] FAN F R, TIAN Z Q, WANG Z L.Flexible Triboelectric Generator[J]. Nano Energy, 2012, 1(2): 328-334.
[32] STARK B H, MITCHESON P D, MIAO P, et al.Converter Circuit Design, Semiconductor Device Selection and Analysis of Parasitics for Micropower Electrostatic Generators[J]. IEEE Transactions on Power Electronics, 2006, 21(1): 27-37.
[33] MITCHESON P D, STERKEN T, HE C, et al.Electrostatic Microgenerators[J]. Measurement and Control, 2008, 41(4): 114-119.
[34] SUZUKI Y, MIKI D, EDAMOTO M, et al.A MEMS Electret Generator with Electrostatic Levitation for Vibration-Driven Energy-Harvesting Applications[J]. Journal of Micromechanics and Microengineering, 2010, 20(10): 104002.
[35] CHENG T H, SHAO J J, WANG Z L.Triboelectric Nanogenerators[J]. Nature Reviews Methods Primers, 2023, 3: 39.
[36] PANDA S, HAJRA S, OH Y, et al.Hybrid Nanogenerators for Ocean Energy Harvesting: Mechanisms, Designs, and Applications[J]. Small, 2023, 19(25): 2300847.
[37] SHEN F, LI Z J, GUO H Y, et al.Recent Advances towards Ocean Energy Harvesting and Self-Powered Applications Based on Triboelectric Nanogenerators[J]. Advanced Electronic Materials, 2021, 7(9): 2100277.
[38] WANG B Q, WU Y, LIU Y, et al.New Hydrophobic Organic Coating Based Triboelectric Nanogenerator for Efficient and Stable Hydropower Harvesting[J]. ACS Applied Materials & Interfaces, 2020, 12(28): 31351-31359.
[39] XU L, JIANG T, LIN P, et al.Coupled Triboelectric Nanogenerator Networks for Efficient Water Wave Energy Harvesting[J]. ACS Nano, 2018, 12(2): 1849-1858.
[40] LIU Y P, ZHENG Y B, LI T H, et al.Water-Solid Triboelectrification with Self-Repairable Surfaces for Water-Flow Energy Harvesting[J]. Nano Energy, 2019, 61: 454-461.
[41] WANG Z L, JIANG T, XU L.Toward the Blue Energy Dream by Triboelectric Nanogenerator Networks[J]. Nano Energy, 2017, 39: 9-23.
[42] XU C G, LIU Y, LIU Y P, et al.New Inorganic Coating-Based Triboelectric Nanogenerators with Anti-Wear and Self-Healing Properties for Efficient Wave Energy Harvesting[J]. Applied Materials Today, 2020, 20: 100645.
[43] NAN Y B, WANG X T, ZHOU H, et al.Highly Porous and Rough Polydimethylsiloxane Film-Based Triboelectric Nanogenerators and Its Application for Electrochemical Cathodic Protection[J]. Science, 2023, 26(11): 108261.
[44] JUNG H, OURO-KOURA H, SALALILA A, et al.Frequency-Multiplied Cylindrical Triboelectric Nanogenerator for Harvesting Low Frequency Wave Energy to Power Ocean Observation System[J]. Nano Energy, 2022, 99: 107365.
[45] 邱志明, 马焱, 孟祥尧, 等. 水下无人装备前沿发展趋势与关键技术分析[J]. 水下无人系统学报, 2023, 31(1): 1-9.
[46] QIU Z M, MA Y, MENG X Y, et al.Analysis on the Development Trend and Key Technologies of Unmanned Underwater Equipment[J]. Journal of Unmanned Undersea Systems, 2023, 31(1): 1-9.
[47] 冯景祥, 姚尧, 潘峰, 等. 国外水下无人装备研究现状及发展趋势[J]. 舰船科学技术, 2021, 43(23): 1-8.
FENG J X, YAO Y, PAN F, et al.Existence and Development Trend of Underwater Unmanned Equipment in Foreign Countries[J]. Ship Science and Technology, 2021, 43(23): 1-8.
[48] VIDAL J V, SLABOV V, KHOLKIN A L, et al.Hybrid Triboelectric-Electromagnetic Nanogenerators for Mechanical Energy Harvesting: A Review[J]. Nano-Micro Letters, 2021, 13(1): 199.
[49] ZHONG Y M, ZHAO H B, GUO Y C, et al.An Easily Assembled Electromagnetic-Triboelectric Hybrid Nanogenerator Driven by Magnetic Coupling for Fluid Energy Harvesting and Self-Powered Flow Monitoring in a Smart Home/City[J]. Advanced Materials Technologies, 2019, 4(12): 1900741.
[50] WU X Y, LI X J, PING J F, et al.Recent Advances in Water-Driven Triboelectric Nanogenerators Based on Hydrophobic Interfaces[J]. Nano Energy, 2021, 90: 106592.
[51] WANG Z L, WANG A C.On the Origin of Contact-Electrification[J]. Materials Today, 2019, 30: 34-51.
[52] 李申芳, 王军雷, 王中林. 利用摩擦纳米发电机的流体能量俘获研究新进展[J]. 力学学报, 2021, 53(11): 2910-2927.
LI S F, WANG J L, WANG Z L.Progression on Fluid Energy Harvesting Based on Triboelectric Nanogenerators[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(11): 2910-2927.
PDF(15808 KB)

Accesses

Citation

Detail

Sections
Recommended

/